Human Machine Interface (HMI)

A human–machine interface or HMI is the apparatus which presents process data to a human operator, and through which the human operator controls the process.

HMI is usually linked to the SCADA system’s databases and software programs, to provide trending, diagnostic data, and management information such as scheduled maintenance procedures, logistic information, detailed schematics for a particular sensor or machine, and expert-system troubleshooting guides.

The HMI system usually presents the information to the operating personnel graphically, in the form of a mimic diagram. This means that the operator can see a schematic representation of the plant being controlled. For example, a picture of a pump connected to a pipe can show the operator that the pump is running and how much fluid it is pumping through the pipe at the moment. The operator can then switch the pump off. The HMI software will show the flow rate of the fluid in the pipe decrease in real time. Mimic diagrams may consist of line graphics and schematic symbols to represent process elements, or may consist of digital photographs of the process equipment overlain with animated symbols.

The HMI package for the SCADA system typically includes a drawing program that the operators or system maintenance personnel use to change the way these points are represented in the interface. These representations can be as simple as an on-screen traffic light, which represents the state of an actual traffic light in the field, or as complex as a multi-projector display representing the position of all of the elevators in a skyscraper or all of the trains on a railway.

An important part of most SCADA implementations is alarm handling. The system monitors whether certain alarm conditions are satisfied, to determine when an alarm event has occurred. Once an alarm event has been detected, one or more actions are taken (such as the activation of one or more alarm indicators, and perhaps the generation of email or text messages so that management or remote SCADA operators are informed). In many cases, a SCADA operator may have to acknowledge the alarm event; this may deactivate some alarm indicators, whereas other indicators remain active until the alarm conditions are cleared. Alarm conditions can be explicit—for example, an alarm point is a digital status point that has either the value NORMAL or ALARM that is calculated by a formula based on the values in other analogue and digital points—or implicit: the SCADA system might automatically monitor whether the value in an analogue point lies outside high and low limit values associated with that point. Examples of alarm indicators include a siren, a pop-up box on a screen, or a coloured or flashing area on a screen (that might act in a similar way to the “fuel tank empty” light in a car); in each case, the role of the alarm indicator is to draw the operator’s attention to the part of the system ‘in alarm’ so that appropriate action can be taken. In designing SCADA systems, care must be taken when a cascade of alarm events occurs in a short time, otherwise the underlying cause (which might not be the earliest event detected) may get lost in the noise. Unfortunately, when used as a noun, the word ‘alarm’ is used rather loosely in the industry; thus, depending on context it might mean an alarm point, an alarm indicator, or an alarm event.

Electrical & Instrumentation (E&I)

Electrical & Instrumentation (E&I)

No matter the project size we will design, supply, install and support all of your E&I needs. On time, and within budget.

Programmable Logic Controllers (PLC)

Programmable Logic Controllers (PLC)

Our team of specialists are experts in a wide range of controllers. We will install, upgrade and support most controllers.

Human Machine Interface (HMI)

Human Machine Interface (HMI)

From local touch panels to large control rooms, rest assured we will provide the best solution.